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The particle paths of the Arnold-Beltrami-Childress (ABC) flows 

u = (A sinz+C cosy, B sinz+A cosz, C siny+B cosx). 

are investigated both analytically and numerically. This three-parameter family of 
spatially periodic flows provides a simple steady-state solution of Euler’s equations. 
Nevertheless, the streamlines have a complicated Lagrangian structure which is 
studied here with dynamical systems tools. In  general, there is a set of closed (on the 
torus, T3) helical streamlines, each of which is surrounded by a finite region of KAM 
invariant surfaces. For certain values of the parameters strong resonances occur 
which disrupt the surfaces. The remaining space is occupied by chaotic particle paths: 
here stagnation points may occur and, when they do, they are connected by a web of 
heteroclinic streamlines. 

When one of the parameters A, B or C vanishes the flow is integrable. In the 
neighbourhood, perturbation techniques can be used to predict strong resonances. 
A systematic search for integrable cases is done using Painlev6 tests, i.e. studying 
complex-time singularities of fluid-particle trajectories. When ABC =k 0 recursive 
clustering of complex time singularities occurs that seems characteristic of non- 
integrable behaviour. 

1. Introduction 
Three-dimensional steady flows with a simple Eulerian representation can have 

a chaotic Lagrangian structure. By this we mean that infinitesimally close fluid 
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particles following the streamlines may separate exponentially in time, while 
remaining in a bounded domain, and that individual streamlines may appear to fill 
entire regions of space (see also $3.1 ) . Thus the positions of fluid particles may become 
effectively unpredictable for long times. A class of flows with presumably chaotic 
streamlines has been identified by Arnold (1965). These flows involve three real 
parameters A, B and C; relative to rectangular Cartesian coordinates they are 
2x-periodic in x, y, and z and have velocity u = (u, v, w), where 

1 u = A sinz+Ccosy, 
v = Bsinx+Acosz, 
w = C sin y + B  cosx. 

Arnold (1965) was interested in three-dimensional steady-state solutions of the 
Euler equation 

a,u+w x u = -vp*, (1.2) 

where p. = p+;u2, w = v xu,  v - u  = 0. (1.3) 

Streamlines lie on surfaces of constant p ,  and therefore can only be chaotic in regions 
where p. is constant, i.e. where the flow has the Beltrami properties: 

0 = Au, u * V h  = 0. (1.4a, b)  

Since (1.4 b) implies that h is constant in chaotic regions, periodic solutions are sought 
with, for simplicity, h constant everywhere. Then the flow is a superposition of plane 
helical waves all having the same wavenumber Ihl and all the same (right or left) 
circular polarization. With 2x-periodicity in x, y, and z assumed, it follows that 
h2 = k2 + p 2  + q2, where k, p, and q are unsigned integers. Any integer n = ha which 
is not of the form 4a(8b+ 7) - with a and b natural integers - may be written as the 
sum of three integer squares (see for example Landau 1927, theorem 187). It is thus 
possible to set up a great variety of Beltrami flows, most of which presumably have 
chaotic streamlines. It is not our purpose to explore all these flows. We just point 
out that they may be of interest in so far as they provide a large class of possible 
topologies for steady, spatially periodic solutions of the Euler (or magnetostatic) 
equation without recourse to ‘non-analytic ’ solutions as in the work of Moffatt (1985) 
or Parker (1985). Henceforth we shall consider exclusively the simplest flows 
corresponding to Arnold’s choice of (1 .l) ; these have h2 = 1 and thus 

(k, p, q )  = (1, 0,O) and permutations. (1.5) 

Early numerical experiments by HBnon (1966) have provided evidence for chaos in 
the special case A = 1/3, B = 1/2, C = 1. The special case A = B = C = 1 was 
introduced independently by Childress (1967, 1970) as a model for the kinematic 
dynamo effect. We propose to call these flows ABC (for Arnold, Beltrami, Childress). 
Another study of a flow with a chaotic Lagrangian structure has been made by Arter 
(1983). He uses the Boussinesq model, with a buoyancy term in the momentum 
equation which is not a gradient ; therefore the Beltrami property is not required for 
chaos. 

From a fluid dynarnical viewpoint flows with chaotic streamlines are interesting 
because they may considerably enhance transport without being turbulent in the 
usual sense - they only display what might be called ‘Lagrangian turbulence’. Aref 
(1984) has shown that simple time-periodic two-dimensional flows can produce 
turbulent mixing of a passive scalar, limited only by the possible existence of 
Kolmogorov-Arnold-Moser (KAM) invariant surfaces. In  three dimensions the same 
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is possible with steady flows such as the ABC's. Arnold et al. (1981) (see also 
Zel'dovich, Ruzmaikin 6 Sokolov 1983) noted that streamline chaos in a steady 
three-dimensional infinitely conducting flow favours the growth of magnetic fields 
(it is controlled by the largest Lyapunov exponent). Arnold & Korkina (1983), 
Galloway & Frisch (1984, 1986), and Moffatt & Proctor (1985) performed numerical 
and analytical studies of dynamo action at finite conductivity for the ABC flows. 

In this paper we report our present knowledge of the kinematics of ABC flows. They 
have a very rich structure and may constitute a prototype for flows with chaotic 
streamlines. 

The paper is organized as follows. In  92 we give some elementary facts about the 
ABC flows, a heuristic description of their morphology, and a qualitative explanation 
of why they are generally chaotic. In  93 the technique of Poincar6 sections is used 
for detailed studies of the dynamical system defined by the trajectories of fluid 
particles; the flows exhibit a mixture of ordered regions (with KAM invariant 
surfaces) and chaotic regions (containing the unstable stagnation points), typical of 
conservative dynamical systems. Particular attention is paid to resonances disrupting 
the invariant surfaces. In  $4 we study near-integrable cases, when one of the 
parameters A, B, C is small, using perturbation expansions. In  $5 we make a 
systematic search for integrable cases using Painlev6 tests. This involves going 
to complex times and studying singularities of fluid-particle trajectories. Such 
singularities are also important in so far as they determine the high-frequency and 
high-wavenumber behaviour of passive scalars (Frisch & Morf 1981). In  $6 we study 
the complex time singularities in the non-integrable cases. 

We note that in the present study, dynamical-systems concepts are relatively easy 
to translate into fluid-dynamical concepts since the flow is in physical space and not 
in some abstract phase space. Elementary introductions to conservative dynamical 
systems may be found in Helleman (1980) or HBnon (1983). More advanced material 
may be found in Arnold (1974, 1978), Moser (1973), Iooss, Helleman & Stora (1983) 
and Guckenheimer t Holmes (1983). 

2. Overall structure 
We are interested here in the structure of the three-dimensional flows given by (1.1). 

The Eulerian structure is straightforward. It consists of a superposition of three 
helical (left-polarized) Fourier modes depending respectively on x, y, and z. The ABC 
flows are divergenceless and satisfy the identity 

v x u = u ,  (2.1) 

so that they have the Beltrami property and are exact solutions of the Euler equation 

Furthermore, the ABC flows may be considered as steady solutions of the 
(1.2). 

Navier-Stokes equation 

a,u+u*vu = -vp+vv2u+f,  (2.2) 

(2.3) 

(2.4) 

V ' u  = 0, u to be 2~-periodic in x, y, 2, 

with a force 

f= v(A sinz+C cosy,B sinz+A cosz,C siny+B cosz). 

When the viscosity v is large, the ABC flow is the only stable solution of the 
Navier-Stokes equation (Galloway & Frisch 1985). As the viscosity is decreased, 
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bifurcations will take place, eventually leading to Eulerian turbulence. According to  
V. I. Arnold, (1985, private communication), this process may be enhanced here 
by the preexisting Lagrangian turbulence ; this was his original motivation for 
introducing the ABC flows. 

2.1. The dynamical system 

The difficulties start with questions involving the Lagrangian structure. What is the 
global structure of streamlines or vortex lines ? How is a passive scalar undergoing 
pure advection transported by the flow ? For this we must study the dynamical system 
associated with fluid particle motion : 

x = A s i n z + C c o s y ,  ( 2 . 5 ~ )  

t j  = B sinx+A cosz, (2.5b) 

i = C sin y+B cosx. ( 2 . 5 ~ )  

For real A ,  B,  C and real x(0) there is a unique solution x ( t )  for all real t .  The map 
x(0) H x ( t )  defines a conservative (i.e. volume preserving) dynamical system. The 
Eulerian flow is 271-periodic in x, y, and z ;  thus the map commutes with 271 translations 
in x, y, and z. It is important to distinguish between the problem where x is in R3 
and where x is in the torus T3 (in the latter case coordinates are defined modulo 271). 
I n  this paper we shall adopt the T3 viewpoint unless otherwise stated, with our 
attention restricted to a periodicity box which we shall choose to  be the cube 

o < x < 2 7 I ,  o < y < 2 x ,  o < z < 2 7 I .  (2.6) 

2.2. Symmetries 
The equations (2.5) have a number of internal symmetries. They are invariant under 
each of the following three transformations : 

s,: x r = x ,  y ~ = n - y ,  z ' = - z ,  t ' = - t .  
s,: x '=-x ,  y ' = y ,  z ' =  7I-2, t ' = - t .  
s,: 5' = 7I-x, y' = -y, z' = z, t' = - t .  

(2.7) :I 
Each of these transformations is a symmetry with respect t o  an axis.These symmetries 
relate time-reversed streamlines ; flows that have such symmetries are called reversible 
(Birkhoff 1927). 

On combining with the periodicity properties, one finds that the system has 
actually an infinite number of axes of symmetry. I n  the case of S,, for instance, these 
axes are parallel to  the x-direction and located at 

y = +7c+nj2, z = nj,, (2.8) 

where j, and j, are arbitrary integers. Similar equations are obtained for S, and S, 
by cyclic permutation of the coordinates. 

Six axes of symmetry are shown on figure 1.  They lie on the faces of the cube 

o < x < x ,  O < y < n ,  o < z < x ,  (2.9) 

which will be called the fundamental box. All other axes are obtained by replicating 
this cube periodically in x, y and z. 

The three symmetries S,, S,, S, commute (modulo 271) and the square of each is 
the identity; therefore they generate a group of eight elements, the direct product 
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FIGURE 1 .  Fundamental box and axes of symmetry. 

C, x C,  x C ,  where C,  is the cyclic group of two elements. The five remaining elements 
are : 

(2.10) 1 
I :  identity; 

s,s,: x’ = -2, y‘ = x - y ,  z’ = A + Z ,  t’ = t ;  
s,s,: 2’ = R+X, y’ = - y ,  z’ = 7t-2, t’ = t ;  
s,s,: x’ = A-x, y’ = x+y, z’ = -2, t’ = t ;  

s,s,s,: 5’ = x+x, y‘ = x+y, z’ = x + z ,  t’ = - t .  

Note that the transformations 8, S,, S, S,  and S, S, commute with the fluid-particle 
motion defined by (2.5). Only two of them are independent, since each is the product 
of the other two. 

The periodicity box can be divided into eight smaller cubes, each of which is the 
image of the fundamental box under one of the above eight symmetries. Therefore 
we could, in principle, restrict our attention to the fundamental box. In  practice this 
is not very convenient, however, because the effect of the combined symmetries is 
not easy to visualize. So we shall generally work with the periodicity box. 

If we consider the whole class of ABC flows and allow the parameters A,  B, C to 
change, a number of additional symmetries emerge. They will allow a reduction of 
the region to be considered in parameter space. 

(i) The equations are invariant under the transformation 

A’ = - A ,  Z’ = Z + Z .  (2.11) 

We can therefore assume A 2 0. Similar transformations allow a reduction to B 2 0 
and C 2 0. 
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FIGURE 2. Restricted parameter space, defined by (2.15): ---, boundary of S, the region of 
existence of stagnation points; -, locus of 3: 1 resonances; . . . . , locus of 4: 1 resonances. 

(ii) The equations are invariant under the cyclic permutation 

A’ = B, B’ = C ,  C‘ = A ,  X’ = y, y’ = Z, Z’ = X. (2.12) 

We can therefore assume that A is the largest of the three parameters: A >, B and 
A 2 C. 

(iii) The equations are invariant under 

B = C ,  C‘ = B, X’ = ~ I C - Y ,  y’ = ~ I C - X ,  Z’ = ~ I C - Z .  (2.13) 

We can therefore assume that B 2 G. 
(iv) The equations are invariant under 

A‘ = PA, B‘ = pB, C‘ = pC, t‘ = t /p ,  (2.14) 

wherep is an arbitrary constant. We can therefore normalize to A = 1 (unless all three 
parameters vanish). 

These four steps result in the following restriction of the parameters : 

1 = A  >, B 3 C >  0. (2.15) 

The restricted parameter space is thus a triangle in the (B, C)-plane (figure 2). 
Finally we note that the symmetries for the case A = B = C = 1 have been 

investigated by Arnold (1984). In particular he showed that the symmetry group (not 
including time-reversing transformations) contains 24 elements and is isomorphic to 
the rotation group of the cube. His results are consistent with ours. 
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2.3. Stagnation points 
One of the features of the ABC flows is that they may have stagnation points where 
the fluid velocity (and vorticity) vanish. It is straightforward to solve for the location 
of these points, with the result 

(2.16) -Asinz= Ccosy=f[+(C2+A2-B2)]:, 
- B s h x =  Acosz=f[$(A2+B2-C2)]k 

the condition that x, y, and z all be real is that a triangle can be formed with sides 
A2, B2 and C2. Then there are eight stagnation points in the periodicity box or, 
equivalently, one in the fundamental box. Within the parameter space defined by 
(2.15), the triangle inequality reduces to 

B2+@ 3 1,  (2.17) 

which defines the region S (for stagnation points) illustrated in figure 2. Notice that 
it has a cusp touching the integrable case C = 0 (see 52.4) at B = 1 .  

Let us examine the local behaviour around a stagnation point x,. Setting 
2 = x-x,, we have, for small 3, 

I - C C ~ Y  = B cosx = + [ + ( ~ 2 + ~ 2 - ~ 2 ) $ ,  

d.z 
dt 
- = vu,2, (2.18) 

where VU, is the velocity gradient matrix evaluated at the stagnation point. It is 
symmetrical since its antisymmetrical part is related to the vorticity which also 
vanishes at  the stagnation point. Hence the eigenvalues of Vu,, solutions of the 
characteristic equation 

h3 -+(A2 + B2 + C2) h - 2ABC cos z COSY cos z = 0, (2.19) 

are real. It is easily checked that they are always distinct except in the particular 
case A = B = C. The absence of a h2 term in (2.19) reflects the fact that 

V*u,  = Tr (Vu,) = 0 (2.20) 

and implies that the eigenvalues sum to zero. Consequently two eigenvalues of Vu, 
have one sign and the third has the other sign. Therefore the stagnation points are 
unstable fixed points of the dynamical system (2.5). Following Cowley (1973), who 
considered a similar problem in studying the three-dimensional structure of magnetic 
field lines, we classify stagnation points with two negative eigenvalues as type a 
(rather than A in Cowley, to avoid confusion) and those with two positive eigenvalues 
as type /3. We notice that when parameters are changed, stagnation points are created 
or destroyed in a/3 pairs as (B, C) crosses the circle BZ+C2 = 1. 

When the eight stagnation points exist, the one in the fundamental box is always 
of type 8. The seven other stagnation points can be deduced using the group of 
symmetries discussed in 92.2. In so doing, a change of sign in t signifies a 
change of sign of the eigenvalues, i.e. a change from type a to type /3 or the converse. 

2.4. An integrable case 
The equations governing fluid-particle motion are in general not integrable. There is 
however at  least one obvious exception, namely the case C = 0, for which 

x = A sinz, y = B sinx+A cosx, i = B cosx. (2.21a, b,c) 
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FIGURE 3. The integrable case: projection of streamlines on (x, 2)-plane. 

The first and third equations form a separable system. By elimination of the time, 
this system is immediately integrated into 

Bs inx+Acosz= V ,  (2.22) 

where V is a constant. By further integration (see Appendix A) x(t) and z ( t )  can be 
expressed as elliptic integrals. Finally, since the integral (2.22) is identical with the 
right-hand side of (2.21 b ) ,  the y-motion is simply 

y = yo+ vt. (2.23) 

Our results show that the particular case C = 0 is separable and integrable. The 
streamlines in the (x, 2)-plane are represented on figure 3. The motion consists of a 
circulation along one of the curves of figure 3, accompanied by a uniform motion in 
y. The figure shows circulation in four ‘cells’ each of which in T3 is topologically a 
set of nested tori. In two of these, with an elliptical structure, the flow is along and 
around a central axis, the closed streamline at the centre. Such cells will be called 
‘vortices’. The other two cells (wavy lines joining x = 0 to x = 27c) are ‘shear layers ’. 
In the centre of the lower shear layer is a surface formed of streamlines that close 
after circulating once in the x-direction. Above and below this surface the flow has 
an additional component in the negative or positive y-direction. A winding number 
can be defined in the shear layer as the number of loops in the y-direction divided 
by the number of loops in the x-direction. This winding number varies continuously 
from - co to + co, and streamlines are closed wherever it is rational. 

2.5. The six principal vortices 
Numerical computations ($3) suggest that there exist regions of space where the flow 
is predominantly in one direction. Each of these regions has roughly the shape of a 
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FIGURE 4. Sketch of the six principal vortices. 

tube parallel to one of the three axes, and will be called a principal vortex, or a vortex 
for short. We show here how the existence of these vortices can be derived from a 
naive analysis of (2.5a-c). A more systematic perturbation analysis, valid near the 
integrable case, will be presented in $4.  

We look for a region where the motion is predominantly in one direction, for 
example the y-direction; this will be called a y-vortex. We try therefore to maximize 
y. This gives 

X N i A ,  z = o .  
Integrating (2.5b), we obtain 

y = (A+B)t.  

(2.24) 

(2.25) 

Equations (2.5a,c) then reduce to 

X ~ C c o s y ,  LzCs iny .  (2.26) 

Since X and L are zero on the average, it is conceivable that the conditions (2.24) will 
remain satisfied along a streamline. In  a similar way, by considering the five other 
possible directions (we can specify both the axis x, y, or z and the sign), we obtain 
a total of six vortices; their arrangement is sketched on figure 4.  

We can go a little further and derive to first order the excursions of x and z from 
their mean values (2.24). Instead of (2.26) we write 

This has the general solution 

(2.27) 
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where a and q5 are constants of integration. The first terms in the right-hand sides 
represent the driven oscillation, i.e. the shape of the vortex as a whole. Thus, the 
vortex is not straight, but twisted into the shape of a left-handed helix making one 
turn when y increases by 2x. (No attempt was made to represent this on figure 4.) 

It can be seen that the shape and phase of this helical motion are such that vortices 
adapt to the existence of other vortices so as to avoid each other. Because of this effect, 
the vortices can have a larger cross-section without intersecting each other. 

The second terms in (2.28) represent the departure of a particular streamline from 
the vortex axis; this is itself helical, but the helicity is opposite to that of the vortex 
axis. We shall come back to this in $4.1 using more systematic perturbation theory. 

2.6. Separatrices and chaos 
Our aim is to understand at least heuristically why the ABC flows display chaotic 
features outside of the principal vortices. We believe that much can be understood 
in terms of unstable periodic orbits and fixed points. The former are closed hyperbolic 
streamlines ; the latter are stagnation points. 

Let us begin with near-integrable cases without stagnation points which lie just 
above the line C = 0 but outside the cusp-shaped region of figure 2. In this case the 
appearance of chaos is qualitatively understood in terms of homoclinic orbits. This 
goes back to PoincarB's (1982) work. We notice that in the integrable case there are 
closed unstable streamlines going through X points. For example in figure 3, the point 
2 = in, z = x is the junction of four different flow cells. The corresponding streamline 
will be called a junction streamline. Figure 3 also shows that the flow cells are bounded 
by the sheets of streamlines that diverge from the junction streamline and converge 
back after going around. Such lines are therefore homoclinic (by definition). In the 
integrable case, homoclinic lines form two-dimensional sheets in the three- 
dimensional flow. In the perturbed case, the unstable closed junction streamlines still 
exist, and there are sheets of Streamlines that asymptotically converge or diverge 
from each of these junction streamlines, called respectively the stable manifold and 
the unstable manifold of the junction streamline. Near a junction streamline the 
stable manifold serves as a separatrix of fluid particles that diverge from the junction 
streamline in opposite directions. Away from the junction streamline the picture 
becomes complicated. Indeed what is different in the non-integrable case is that 
the stable and unstable manifolds of the junction streamline are no longer coincident 
but intersect repeatedly along homoclinic streamlines. This was shown by Gautero 
(1985) for the ABC flows using the method of Melnikov (1963). Each unstable 
manifold becomes infinitely folded up against itself after going around the torus 
(see e.g. figures 36-39 in HBnon 1983). In the bounded region of folding the infinite 
convolution of the stable and unstable manifolds provides an efficient mixing 
mechanism for fluid particles after many eddy-circulation times. We stress that a 
detailed quantitative understanding of this kind of chaos is still lacking. 

The case with stagnation points inside the cusp-shaped region S on figure 2 is quite 
different. From the viewpoint of Hamiltonian systems with two degrees of freedom 
this situation is not structurally stable. It is, however, when we consider the flow 
generated by a three-dimensional vector field of zero divergence: under a small 
perturbation the zeros of the vector field will be just slightly displaced. 

Here we give a first attempt at  understanding the topological structure associated 
with stagnation points. A type-a (in the sense of $2.3) stagnation point has a 
two-dimensional stable manifold made of the sheet of streamlines that asymptotically 
approach the stagnation point. Similarly, a type-p stagnation point has a two- 
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dimensional unstable manifold. Locally stable manifolds act as separatrices. Now, 
consider a point M on the intersection of two sheets associated with type-a and type-/? 
stagnation points respectively (assuming such an intersection exists). Since each 
sheet is composed of streamlines, the flow cannot have a component perpendicular 
to either sheet. Thus the streamline through M lies entirely on the intersection of the 
two sheets. Since each line in one sheet must diverge from a /?-point, and each line 
in the other sheet must converge toward an a-point, this particular streamline joins 
p- to a-points. It is therefore a heteroclinic line, or null-null line (Greene 1982). 

It takes a fluid particle an infinite time (from - co to + 00) to travel a heteroclinic 
line from a type-/? to a type-a stagnation point. Each individual heteroclinic line 
appears to have a fairly simple structure (see $3.3). Notice however that the stable 
and unstable manifolds may wrap around the T3 torus in a very complicated way, 
so that their intersections may form a complicated web of heteroclinic lines. We 
conjecture, at least for the ABC flows, that there are infinitely many heteroclinic lines 
joining two stagnation points of different types ; these increasingly wrap around the 
T3 torus. Some supporting numerical evidence will be given in $3.3. This structure 
may play a role in the generation of chaos when stagnation points are present. An 
interesting phenomenon happens when two stagnation points annihilate by coalescing 
in a saddle-node bifurcation: the shortest heteroclinic line disappears, while the other 
ones go over into unstable periodic orbits. This is shown in Appendix B. Similar 
phenomena have been discussed by Sil’nikov (1969) and C. Tresser (1984, private 
communication). 

3. Numerical experiments 
3.1. Flow visualization by Poincari sections 

The purpose of this Section is to provide detailed visualization of the Lagrangian 
structure of the ABC flows by numerical techniques. Three-dimensional visualization 
techniques (e.g. stereo perspectives) are appropriate for discrete collections of points, 
lines or surfaces, but not for the streamlines of three-dimensional vector fields. We 
shall resort to a standard technique in dynamical systems originally introduced as 
a mathematical tool by Poincarb (1892) for problems of celestial mechanics. The 
method of PoincarB sections is a two-dimensional coding of the three-dimensional 
dynamical system in which one represents only the successive intersections of 
streamlines with one or several surfaces of sections (usually planes). This has the 
advantage that it clearly brings out the relevant objects (KAM surfaces, chaotic 
regions, resonances, etc.) as we shall now see. The basic equations (2.5) are considered 
as a dynamical system on T3 with x, y, and z defined modulo 21c and the parameters 
A, B and C normalized as in (2.15). 

Figure 5 shows a typical example of a Poincad section, for the case A2 = 1, B2 = 2 3’ 

c2 = $ already studied by HBnon (1966). Several streamlines are represented. For each 
streamline, many successive intersections with the surface of section z = 0 are 
represented. The usual features of non-integrable Hamiltonian systems with two 
degrees of freedom are apparent. The plane is essentially divided into ‘ordered’ and 
‘ chaotic ’ regions. In  ordered regions, successive points belonging to the same 
streamline lie on a well-defined curve. In  three-dimensional space, therefore, the 
streamline itself lies on a two-dimensional surface, namely a KAM surface. In chaotic 
regions, on the other hand, the points seem to be randomly scattered over a 
two-dimensional region. All scattered points on figure 5 correspond in fact to a single 
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FIGURE 5. A typical Poincak section, for the case A2 = 1 ,  B2 = 3% f? = S' 

streamline, for which 5 x lo3 successive interactions have been computed. This 
indicates that the streamline itself wanders in a three-dimensional region of space, 
which i t  fills more and more densely as time goes on. 

In  order to  give a better idea of the three-dimensional structure of the flow, a 
number of Poincar6 sections will now be shown simultaneously. The standard 
arrangement is represented in figure 6. There are eight equidistant sections parallel to 
the (9, 2)-coordinate system, corresponding to x = 0, an, . . . , in, and similarly for the 
other directions - a total of 24 sections. 

Figure 7 represents in this way a single chaotic streamline, starting from 
x = y = z = 0, again for the case A2 = 1, B2 = $, C2 = Q. A total of approximately lo5 
points are represented. 

The density of the points is not uniform; this is easily explained. Consider for 
instance a small region with area u in one of the surfaces of section y = const., and 
a small cylinder parallel to the local direction of flow, with base (T and height ydt. 
At the next intersection with the same surface of section, the image of this cylinder 
is another cylinder of base u' and height y' dt. Volumes in (2, y, Z) are preserved by 
the flow ; therefore mj dt = u'y' dt. Thus u varies as the inverse of y. It follows that 
the density of the points in a surface of section is proportional to  y, the perpendicular 
component of velocity. In particular, the density falls to zero along the line defined 
by y = 0, or 

B sinx+A cosz = 0. 

. 

(3-1) 

This line is the locus of the points where streamlines are tangential to the surface 
of section. The line (3.1), and the equivalent lines for the other directions of section, 
are represented on figure 8 for the same values of A,  B, C as in figure 7. 

The empty regions in figure 7 are the ordered regions. They can be seen to 
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Y X X 

FIGURE 6. Key for figures 7-13. 

correspond with the six principal vortices ($2.5). Figure 9 shows details for the case 
of the vortex for which x is constantly decreasing. A number of streamlines are 
represented. The x-sections (left) illustrate the structure of this vortex most clearly. 
The analysis of $2.5 is confirmed: at lowest order, the vortex is a cylinder, with its 
axis in y = x, z = in; a t  next order, the vortex is a left-handed helix, the excursions 
in y and z being proportional to cos x and - sin x respectively. 

A given streamline describes a helicoidal motion on the surface of the vortex, which 
should not be confused with the motion of the vortex itself. It is characterized by 
a winding number, which is the fraction of a turn made by the helix when x decreases 
by 271. This winding number can take arbitrary values. This kind of streamline is 
called a quasi-periodic orbit. 

A set of two islands can be seen among the nested curves. It corresponds to a 
streamline for which the winding number is exactly t : each island comes back to itself 
when x has decreased by 4x. An examination of the successive x-sections shows also 
that the streamline has the shape of a right-handed helix : it rotates in the direction 
opposite to that of the vortex itself (see $52.5 and 4). 

Sets of streamlines similar to figure 9 are found in the five other principal vortices. 
A single chaotic streamline is represented in figure 10 for the particular case 

A2 = B2 = c2 = 1 introduced by Childress (1967, 1970) for dynamo studies. When 
compared with figure 7 the chaotic region is small but appears more complex. New 
empty regions appear which are again occupied by quasi-periodic streamlines, as 
could be expected. These streamlines, however, are no longer associated with any of 
the six principal vortices. In  the example illustrated by figure 11 the numbers indicate 
the order in which some sections are encountered; this gives an idea of the motion 
in (2, y, %)-space (number 12 is followed by number 1). For each coordinate, the motion 
can be described as the superposition of an oscillation and a steady progression ; after 
one period, x and y have increased by 271 while z has decreased by 271. Seven additional 
chaotic streamlines can be obtained by applying the symmetries described in $2. The 
eight streamlines, taken together, occupy all the smaller empty regions of figure 10. 
These streamlines belong to what we shall call secondary vortices. 
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The particular case A2 = B2 = c2 is invariant under cyclic permutation of the 

XI = 2, y' = x, z /  = y. (3.2) 
coordinates : 

This explains why the sections of figure 10 look alike in the three directions. The 
vortex supporting the streamline of figure 11 is invariant under the transformation 

x1 = 7c-2, y' = x+x, z /  = -y, (3.3) 

which is the product of the symmetries S,S, and (3.2). Another atypical feature of 
this symmetric case is that the one-dimensional unstable manifold of a type-a 
stagnation point coincides with the one-dimensional stable manifold of a type$ 
stagnation point (e.g. the line x = y = 2). This configuration is clearly structurally 
unstable to perturbations of the coefficients A, B and C. 

Figure 12 illustrates the case A2 = 1, B2 = 1, C2 = 0.5, which lies inside the 
stagnation point region S of figure 2. The overall features are the same as in 
figure 7 but considerable fine structure appears in the chaotic region. 

The case A2 = 1, B2 = 0.5, c2 = 0.5 illustrated in figure 13 is quite similar to 
figure 7. Further cases with very small C will be shown in $4. 

Taken together, our results suggest that the fundamental picture does not change 
significantly when the parameters are varied. The (2, y, 2)-space is divided into (i) 
regions of regular, quasi-periodic streamlines ; these regions consist essentially of the 
principal vortices; (ii) a chaotic region, which fills the space left free between the 
principal vortices and contains the stagnation points (when they exist). Of course, 
a finer analysis would almost certainly reveal additional structure on a smaller scale : 
small chaotic regions inside the vortices, small islands inside the large chaotic region, 
etc. as is usual in non-integrable systems. 

Our numerical explorations have not revealed any new integrable cases other than 
the known cases (C = 0). This will be confirmed by further analytic studies in $85 
and 6. 

3.2. Resonances 
It is known from analytic work (see e.g. Arnold 1974, 1978) that KAM surfaces can 
be disrupted, leading to increased chaotic regions ; this takes place through resonances 
(rational winding numbers). One of the most conspicuous cases is when a strong 3: 1 
resonance occurs at the centreline of the nested KAM surfaces forming one of the 
principal vortices. Figure 14 shows a Poincare section in the z = 0 plane for A = 1.19, 
B = 1.25, C = 0.18, which is near a 3: 1 resonance. We observe that the principal 
z-vortices have been disrupted and replaced by systems of three small vortices. 

We made a systematic search for 3: 1 resonances occurring at the centre of a 
principal vortex. Because of the symmetries ($2.2), it is sufficient to consider one 
particular vortex, provided that we abandon the constraints of the inequalities (2.15) 
but still normalize to A = 1. We select the y-vortex with y increasing. Again because 
of the symmetries, the centre of this vortex lies on the line z = $ x  in the Poincar6 
section y = 0. For given parameters B and C, this centre is a fixed point of the 
Poincar6 map defined by successive intersections with y = 0. Its z-coordinate is found 
by an iterative scheme. Next, the winding number at the fixed point is calculated 
by integrating two nearby orbits, starting with small opposite displacements 
(Az = from the periodic orbit ; this symmetrical scheme ensures an accuracy of 
order ( A Z ) ~  in the winding number. Then a search for a winding number of + is made, 
again by an iteration scheme, holding C fixed and varying B. In the integrable case 
C = 0, the solutions for B are known ($4.3) : they are B = i (7  f 3 4 5 )  = 6.854 102. . . 
and 0.145898. . . . This provides starting points for the search. 



372 T .  Dombre, U .  Frisch, J .  M .  Creene, M .  He'non, A .  Mehr and A .  M .  Soward 



Chaotic streamlines in the ABC flows 373 

- 0 0 0  



374 T .  Dombre, U .  Frisch, J .  M .  Greene, M .  HCnon, A. Mehr and A. M .  Soward 

X 

FIGURE 14. Poincark section of a chaotic streamline in the vicinity of a 3: 1 resonance. 

Results are shown on figure 15 (solid line); points of interest are labelled c to 4. 
The locus of 3 : 1 resonances is a continuous curve joining the two starting points, Pl 
and p7. The left and right parts of this curve are exchanged under the symmetry 
(derived from (2.12), (2.13) and (2.14)): 

1 C 3n 3n 3n 
B’ B ’  2 2 2 

2, x’ = --2, y’ = --y. (3.4) A ’ = A = l ,  B ’ = -  c’=- 

This symmetry maps 4 into P8-i; so it is only necessary to compute the left part of 
the curve, extending from < to P4. Note also that for any point of the curve, both 
y-vortices have a 3: 1 resonance, since these vortices are exchanged under the S, 
symmetry ($2.2). 

Finally we reintroduce the normalization (2.13), applying symmetries as needed. 
The curve of figure 15 is then folded into the solid line shown on figure 2. This line 
represents, in the reduced triangle, the locus of parameter values for which a 3: 1 
resonance exists for one pair of principal vortices. The direction of these vortices is 
indicated by X, Y, or 2. The X-segment is obtained from segment P2p3 of figure 15 
by the symmetry (2.13); the 2-segment is obtained from segment P3p4 of figure 15 
by the symmetry (derived from (2.12) and (2.14)): 

1 B 
C C’  A ‘ = A = l ,  B ’ = - ,  c’=- XI=%, y‘=x, z ‘=y.  (3.5) 

A noteworthy feature is that the resonance curve has a branch with B nearly constant 
(interval Pl P3 in figure 15) close to the values of i (7  - 3 d 5 )  it achieves in the integrable 
case C = 0. An explanation of this feature follows from the perturbation theory result 
(4.15) of $4.3. 
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FIQIJRE 15. Locus of 3: 1 resonances in parameter space. 

Of particular interest are the ‘double-resonance’ points Q2 and Q3 G ,  - e r e  2. Q, 
corresponds to A = 1,  B = C = 0.145789.. . ; for these values of the parameters, the 
four principal vortices corresponding to the x- and y-directions all have a 3: 1 
resonance. Similarly at Qs, which corresponds to A = B = 1, C = 0.169834.. . , the 
four principal vortices in the z- and z-directions have a 3: 1 resonance. 

4 : 1 resonances can also produce chaos. Therefore their locus in the parameter plane 
was also calculated; i t  is shown as a dotted line in figure 2. The topology is the same 
as that of the 3 : 1 resonance. Inspection of the Poincarh sections shows, however, that 
the principal vortices are not destroyed in this case. 

As for 2 : 1 resonances, numerical searches and analytical expansions indicate that 
they do not exist for real values of the parameters, except in the special integrable 
case A = B = 1, C = 0. 

3.3 Heteroclinic lines 
Heteroclinic lines (i.e. streamlines joining two stagnation points) and their possible 
relevance to the generation of chaos were discussed in 82.6. Here we show how their 
accurate numerical determination can be carried out and we give some results. 

In  this Section, we shall consider streamlines as existing in R3 rather than in T3. 
Generalizing (2.9), we call a fundamental box (kz, k,, k,) the cube defined by 

k , x < x < ( k , + l ) x ,  k,x < y < ( k , + l ) x ,  k , x < z < ( k , + l ) x ,  (3.6) 

with k,,k,,k, integers. We shall also call fundamental planes the faces of the 
fundamental boxes. 

It will be sufficient to search for the heteroclinic lines that have one end at a given 
stagnation point; all other heteroclinic lines can then be derived by use of the 
symmetries. We shall therefore consider only the heteroclinic lines starting from the 
stagnation point in the fundamental box (2.9), that is ( O , O ,  0). 
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When stagnation points exist, there is one and exactly one in each fundamental 
box (excluding the borderline case which corresponds to the equality in (2.17)). 
Moreover, this point is of type P or a, depending on whether k, + k, + k, is even or 
odd. It follows that, when a streamline crosses a fundamental plane, it  moves from 
a fundamental box occupied by an a-point to a box occupied by a /3-point, or the 
converse. 

A heteroclinic line must start from a P-point and end at an a-point. Therefore it 
crosses the fundamental planes an odd number of times. We designate this number 
by Zp- 1 .  The integer p will be called the order of the heteroclinic line; p 2 1. We 
call P the point of the streamline corresponding to the central fundamental plane 
crossing, i.e. the pth crossing starting from either end. The streamline thus consists 
of two parts PP and Pa. 

There exists a symmetry which brings a onto /3 (see $2.2). This symmetry 
transforms P into P ,  and Pa into P P ,  which is part of another streamline. 

Consider the one-parameter set of all streamlines emerging from a given 8-point 
along its two-dimensional unstable manifold. We choose a definite order p ,  and for 
each streamline we compute the point of intersection of rank p with the fundamental 
planes. These points form a set E,, which consists of a number of disconnected curve 
segments. The following properties hold : to any heteroclinic line starting from P there 
corresponds a pair of points P, P' belonging to E,, which are images of each other 
in a time-reversing symmetry. Conversely, a pair of points with these properties 
obviously produces a heteroclinic line. 

The problem is thus reduced to finding pairs of image points in Ep.  A simple way 
to do this is to 'normalize' the points P of E,, i.e. to transform each point P into 
another point Q by the following series of steps: assume for instance that P lies in 
a fundamental plane z = h; 

(i) by an appropriate translation, bring the point in: 0 < x < 2x, 0 < y < 2x, 

(ii) if z = x, bring the point on z = 0 by an application of S,; 
(iii) if y < !j x or y > 8 x, bring the point inside ix < y < ix by S, ; 
(iv) if x < in or x > %7c, bring the point inside !jx < x < in by S,. 
The end result of these manipulations is a point Q which lies in the square C, defined 

z = 0 or n; 

+ n < x < i x ,  +n<y<$, z = o .  (3.7) by 

Similar steps, deduced from the above by cyclic permutation of x, y, z ,  are taken if 
P lies in a plane x = kx or y = kx ,  and produce a point Q lying in a square C, or C,. 

The points Q thus obtained form a new set F,, which again consists of a number 
of curve segments. It is easily shown that two points P ,  P of E,, which can be deduced 
from each other by a symmetry, have the same image Q in F,. We have thus a 
computational strategy for finding all heteroclinic lines of order p : integrate 
numerically the streamlines starting from the P-point, and obtain the E,  set; apply 
the above steps to derive the F, set; and look for curve intersections in that set. 
Each such intersection corresponds to one heteroclinic line. 

In  practice the family of streamlines emanating from the P-point is conveniently 
generated by taking as initial point for the numerical integration : 

P+el  V, cos8+e, V, sin8, (3.8) 

where /3 represents the initial stagnation point, V, and V, are two eigenvectors 
corresponding to the two positive eigenvalues, el and e, are small constants, and the 
parameter 8 is varied from 0 to Zn. 
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Computations were made for the case 

A2 = 1,  B2 = 0.9, c2 = 0.8. (3.9) 

All heteroclinic lines up to order 5 were determined. For p = 1 , 2 , 3 , 4 , 5 ,  the number 
of heteroclinic lines emanating from the P-point was found to be: 3, 3, 6, 6, 20 
respectively. This suggests that the number of heteroclinic lines increases indefinitely 
as the order is increased. This is also suggested by intuitive considerations: the 
stagnation points belong to the chaotic region, therefore a streamline emanating from 
a stagnation point will tend to fill densely that region ; in particular it will approach 
any other stagnation point as closely as desired, an infinite number of times. In every 
such case, a slight adjustment of initial conditions should then be sufficient to obtain 
an exact heteroclinic line. 

Heteroclinic lines can be symmetric with respect to their central point P (in which 
case P and P coincide) or asymmetric. The first asymmetric lines appear only at order 
3, but their number increases rapidly with p. Out of the above total of 38 lines, 12 
are symmetric and 26 are asymmetric. 

We studied also the set of a stagnation points in which these heteroclinic lines 
end. No obvious pattern was found. One noticeable result is that more than one 
heteroclinic line can end in the same a-point. For instance, three of the above 38 lines 
connect the P-point in the ( O , O , O )  box to the a-point in the ( O , O ,  1)  box. An open 
question is whether, for specified starting and ending points in R3, there exists always 
one, many or infinitely many heteroclinic lines. 

4. The near-integrable case 
4.1. Formulation 

Perturbation analysis near an integrable case is one of the few analytic tools available 
for studying chaotic systems. For C = O ,  the ABC flow is integrable ($2.4 and 
Appendix A). The Poincar6 map from the y = 0 plane to the y = 271 plane can be 
expanded in powers of C for small C. Such an expansion is particularly simple if we 
restrict attention to the neighbourhood of the principal y-vortex, e.g. near z = ~ I I  and 
z = 0. As in (A 5 ) ,  we set 

A2 = AB, m2 = B / A ,  C = As (m2 < 1). (4.1) 

It is convenient for the perturbation calculation to use the modified dependent 

(4.2) 

5 = Cr+iSi. (4.3) 

variables z 
f = mf(z-in), = --i 

ma 
and introduce the complex variable 

Substituting into the flow equations (2.5) gives 
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For E = 0 there is the exact solution t; = 0. For e > 0 and small we are interested 
in the solution with 161 = O(e). We thus set 
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C(Y) = St(Y),  Y = !At), (4.5) 

substitute back into (4.4) and expand everything to leading order in e2. Elimination 
oft  gives the single equation 

1 
-iw, t + - e 2  [$(Eo t3 + E*') + IE12(t+Eo [*)I + O ( E ~ ) ,  (4.6) 16 

where the star denotes complex-conjugate and, as in (A 5)-(A 6), 

w;' = m-l+m, Eo = (1-40t)i. (4.7) 

to(y) = --:i(a+eiY+a-e-iY)+toe-i"oY, (4.8) 

In the limit €40, (4.6) becomes linear and has the general solution 

where (4.9) 

and to is an arbitrary complex number. When lo = 0 we have a 2x-periodic solution, 
i.e. a closed streamline (on the torus). The eiY (or e-i") term corresponds to a helix 
winding in the positive (or negative) direction around the y-axis. The combination 
gives a helix with elliptic base, the overall winding o( which is in the positive 
direction because a, > a- 2 0. The term proportional to to gives the deviation from 
the helical closed streamline of neighbouring streamlines. These are also helical, but 
with negative winding since w0 is positive. When y varies from 0 to Zx neighbouring 
streamlines have turned by 271, so that wo is the winding number (in the linear 
approximation). Finally, we note that the lowest-order perturbation solution (4.8) 
becomes identical with the somewhat heuristically derived solution (2.28) if we set 
to = i a ( ~ ~ 9  c-1 ei@. 

4.2. The 2x-periodic solution 
When e > 0, i t  is in principle possible to find the 2x-periodic orbit to all orders in 
e2. This may be done in two ways. One is a variational method based on the 
observation that closed streamlines of Beltrami flow are extremals of the circulation 
integral $u*dx along arbitrary closed contours (Cary & Littlejohn 1983). More 
directly, one can look for solutions of (4.6) of the form 

- m -  
9 (4.10) i(2n+l)y E = t (w0,  e; Y) = z En@,, 4 e 

-a, 

where the order-one contribution is given by (4.8) with lo = 0. The higher-order 
corrections are tedious and, in general, not particularly enlightening. An exception 
seems to be the calculation of the order-s2 correction for the special case A = B 
(which has additional symmetries). It has oo = 4 and the Zx-periodic solution (4.8) 
is to(y) = -(ti) eiY. Substitution into (4.6) gives 

(4.11) 
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with periodic solution 

(4.12) 

A noteworthy feature is that the order4  corrections have very small coefficients. This 
suggests that some properties valid in the integrable case may still be approximately 
valid when E = O(1) and, in particular, when A = B = C (i.e. E = 1). 

4.3. Resonances in the near-integrable case 

The streamlines close to the 2n-periodic streamline discussed above have the form 

5 = t+l, (4.13) 

where the small perturbation [satisfies a linear equation (derived from (4.6)). Hence, 
according to Floquet theory, 5 can be written in the form 

6 w f i  
5 = e+Y Z En(oo, e )  e2inu, (4.14) 

where o, wkich stands for ~ ( e ) ,  is the winding number in the limit of vanishing 
cmplitude, 151 + O .  When E is small, (4.8) indicates that the series is dominated by the 
5, term and that o(0) = wo. The order-E2 corrections are generally of no great interest 
except perhaps in the case of resonance. For the 3: 1 resonance (o = i), we find that 

-m 

with 

w =-  ; [ 1-- + OV)] 

= - = : ( 7 - 3 d 5 ) [ 1 - 3 ( )  3 € 2  +0(&)]. 

0 

m2 B 
A 

(4.15) 

(4.16) 

When e = 0, this result agrees with the numerically obtained value B = 0.145898.. . 
in the borderline case C = 0 (83.2). For finite e ,  the contribution from the order-e2 
term is extremely small indeed, consistent with the fact that the interval P3 in figure 
15 is almost straight. For instance at  Pz we have B = 0.145789.. . ($3.2), which differs 
from the value at C = 0 by only -0.OOO 109. . . . Note that this is in good agreement 
with the correction term in (4.16), which evaluates to -0.000111.. . . 

Similar remarks hold for the 4: 1 resonance, for which we have to leading order 

oo = a ,  m2 = 7-42/3. (4.17) 

When the amplitude of I l l  is increased from zero, (4.14) may be used as a first 
approximation to the solution, in the neighbourhood of the 3 : 1 resonance, pqvided 
that we allow for the possibility of weak dependence on y of the coefficients 5,. So, 
if we choose 

oo = f+(-f+:6),+0(€4), (4.18) 

where the constant S measures the departure of oo from the resonant value given by 
(4.15), we find that 

E0=-7  16 (4.19) 

evolves slowly according to 

€2 

8 

A 31/5 

13 

(4.20) 

FLM 167 
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Written in the polar form 

(4.20) reduces to a Hamiltonian system with integral 

7 = rei4 

+r4 + $r3 sin 3q5 -tar2 = H ,  a constant. 

(4.21) 

(4.22) 

As S is increased from - 00 three new vortices form, when 6 = - 1 ,  centred at r = 1 ,  
q5 = $71, in and +x. Their size increases until they merge, when 6 = 0, at the centre 
of the original vortex, r = 0. For 6 > 0, the original vortex re-emerges at the centre 
but with reversed circulation in the 7-plane. Our three new vortices with centres at 
r = 1 + (1 +6):, q5 = in, and V n  bound the central vortex and are confined 
to an expanded resonant surface. They are linked by junction streamlines a t  
r = - 1  +(I+&);,  q5 =in, in and in. 

In  view of the very large size of the coefficient of dq/dy in (4.20), the intensity of 
the effect just described is unlikely to be strong until 8 is large. Such is the case for 
the Poincarh section shown in figure 14 for which m2 = 0.144, e2 x 6.2938 implying 
6 x 0.3217. Though three vortices are clearly seen, the large amount of chaos 
presumably means that we are outside a regime in which our weakly nonlinear 
development is applicable. Further evidence of the failure of our theory in this 
parameter range is clear from figure 2. According to (4.16), the C-coordinate of the 
branch Q2 Q3 should be decreasing slightly with increasing B. In  fact the C-coordinate 
decreases until B x 0.55 and then increases. We can, therefore, anticipate that 
higher-order terms affect the results significantly and are responsible for the breakup 
at the edge of the vortices. 

4.4. Outside the principal vortex 
So far we have focused on the local behaviour near the centre of the principal 
y-vortex.The global behaviour in the near-integrable case (C very small) is easily 
investigated by the numerical technique discussed in $3.1. Figure 16 shows the usual 
Poincark sections for A2 = 1 ,  B2 = 0.5001, C2 = 0.0002. There is a fairly conspicuous 
chaotic zone surrounding the two principal y-vortices ; this chaos comes from the 
bifurcation of separatrices originating from the homoclinic loop in the integrable case 
(figure 3). There are two small x-vortices; however no z-vortex going through from 
z = 0 to 271 is visible. In  the integrable case, the solution for which is known in terms 
of elliptic functions, we can identify an imaginary centre streamline of a z-vortex (in 
the sense that it is linked with complex sn’s). In that case the z-vortex is absent but 
the interpretation has interesting consequences which are discussed in Appendix A. 

When C is increased starting from C = 0, the principal x-vortices arise from the 
streamlines marked ( a )  in figure 3, lying in the shear layers midway between the 
y-vortices. The corresponding winding numbers are zero so that these streamlines 
close after looping once in the x-direction. When perturbed with a small value of C, 
one of these lines with a particular value of y becomes the centre of a vortex, and 
another the junction of the separatrices that mark the vortex border. 

More generally, for C = 0 there exist streamlines in the shear layer which close after 
p loopings in x and q loopings in y, where p and q are arbitrary integers. For very 
small C and fixed p and q, some of these lines go over as before into respectively 
centrelines of vortices and junctions of separatrices. However, numerical exploration 
indicates that, except for the principal one, these vortices are destroyed at quite small 
values of C. This happens as follows: the centreline is a periodic orbit which, as C 
increases, undergoes successive period-doubling bifurcations, leading to chaotic orbits 
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at a finite C (Collet, Eckmann & Koch 1983; Greene et al. 1983). Thereby the shear 
layer outside the principal vortices becomes chaotic. 

The z-directed principal vortices are born in a tangent or saddle-node bifurcation 
(see Guckenheimer & Holmes 1983) at a modest value of C. For example, these 
vortices come into existence near A2 = 1 ,  B2 = $, C2 = 0.013, x/2x = 0.7815, 
y/2n = 0.25, and x/2x = 0.7185, y/2n = 0.75. 

T. Dombre, U .  Frisch, J .  M .  Greene, M .  He’non, A .  Mehr and A .  M .  Soward 

5. Search for integrable cases by Painleve tests 
Performing Painlev6 tests seems at  the moment the only non-numerical systematic 

method that can give hints of integrability. The method goes back to the work of 
Painlev6 (1897) and Kowalevskaya (1889, 1890) who realized that a complete 
understanding of the analytic structure in the complex time-domain of a dynamical 
system governed by an 0.d.e. can be as helpful as having integrability in the sense 
of that time (i.e. reduction to ‘known’ functions). Actually Painlev6 proposed to 
extend the definition of integrability to include those o.d.e.’s for which the only 
movable singularities (i.e. depending on initial data) are poles. This is the case of the 
celebrated Painleve transcendants, the simplest of which is the solution of 

Z = 6x2+t. (5-1) 

We briefly summarize the essential steps for this example, since this will simplify 
the subsequent explanations in connection with ABC flows (for details see Painlev6 
1897 or Hille 1976). Dominant balance requires that near a singularity t ,  we have 
x(t) N ( t - t * )+.  It is now assumed that x(t) has an expansion near t ,  of the form 

(0 

x(t) = ( t - t * ) - 2  x ul(t-t*)? 
1-0 

Substitution into (5.1) gives the relation ( j  = 1,2,  . . . )  

O<S<j-l 
r+s-j 

Since the right-hand side of (5.3) involves only the u, ( n  < j ) ,  the relation can be 
solved recursively except when j2- 5j- 6 vanishes for some integer. This happens at 
the ‘resonance’ j = 6 (sometimes also called Kowalevskaya exponent, cf. Yoshida 
1984). The interesting observation (requiring a few lines of easy algebra) is that the 
right-hand side of (5.3) also vanishes at j = 6; the fulfilment of this compatibility 
condition implies that an arbitrary constant can be introduced for ue; together with 
the arbitrary choice oft, this gives two arbitrary constants, as required for the general 
solution of a second-order equation. 

This subject has undergone a recent revival when it was realized that there may 
be a connection between the Painlev6 property (and various generalizations thereof) 
and integrability in one of the modern senses for both o.d.e.’s and p.d.e’s (Nakach 
1977; Ablowitz, Ramani & Segur 1978, 1980; Ziglin 1981; Weiss, Tabor & Carnevale 
1983; Jimbo, Kruskal & Miwa 1982; Ramani, Dorizzi & Grammaticos 1982; Lochak 
1985 and references therein). 

Particle trajectories for the ABC flows cannot have any singularities in the real 
domain but their analytic continuation to complex times may (and usually will) 
become singular. Complex-time singularities are of interest for other reasons than 
Painlev6 tests. It has been shown by Frisch & Mod (1981) that high-frequency 
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intermittent bursts of the kind observed by Batchelor 6 Townsend (1949), Kuo & 
Corrsin (1971), Gagne (1980) and others can be related to complex-time singularities: 
when a real analytic signal (recorded, for example, by a probe in a turbulent fluid) 
is high-pass filtered with a cutoff 52 sufficiently large, the resulting signal displays 
bursts corresponding to the complex singularities closest to the real domain. Each 
burst has an amplitude proportional to exp (- 5217,1), 7* being the imaginary part of 
the time of singularity. Particle trajectories in steady flows, which may be observed 
experimentally by tracking techniques, should also display such intermittent bursts. 

In  this and the following Section we investigate the nature of the complex-time 
singularities of the ABC flows. We begin by performing a Painlev6 test. For this it 
is convenient to rewrite (2.5) in terms of new dependent variables defined as 

We then obtain the system 
$, = eizn (n = 1,2,3). (5.4) 

(5.5) 

where A (resp. 8, b) = $4 (resp. B, C). In  the following we shall take ABb =k 0 since 
we already know that the system is otherwise integrable. In the original system at 
a singularity at least one of the 2, variables must tend to infinity (otherwise it is easily 
shown, recursively, that all time derivatives are finite). In terms of the $, this means 
that at least one of them must tend to infinity or zero. No loss of generality follows 
by assuming that the variable $l tends to infinity. Indeed the substitution 

(5.6) 
is equivalent to 

22, z3) ( -22, 23) (5.7) 

which maps the (A, B, C) flow on the (-A, B, -C) flow. There are similar transform- 
ations that leave $1 or $2 rather than $3 invariant. Let us assume in the following 
that ljrl is the divergent variable (otherwise permute the variables). The leading-order 
behaviour near some singular time t, is obtained by dominant balance analysis, 
making the substitution 

I $2$3$1 = [ A $ 2 ( $ ~ - 1 ) + i ~ ( $ i + 1 ) $ 3 1 $ ~ ,  
$3 $1 $2 = [4+3($;  - 1) + iA($: + 1) $11 $27 

$1 $2 $3 = [ W l  ($4 - 1) + i m :  + 1) $21 $8, 

($1, $2, $3)+ ($rl, $F19 $3) 

1L1(t) = a(t-t*)O, $2(t) = b(t-t*)b,  $&t) = c( t - t*)Y.  (5.8) 

Rea,Re/3,Rey < 0. (5.9) 

We first assume that all three terms are divergent, i.e. that 

This leads to the equation 

(a- 1) ( t -  t , ) a + p + y - 1  N [Ac(t - t,)a+P+zy+ iOb(t- t,)a+2@+7] (5.10) 

and two other equations deduced by cyclic permutation. The unique solution is 

a = / 3 = y = - 1  (5.11) 

(5.12) 
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We obtain by substitution into (5.5) the recursion relations for j 2 1 
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= (Rj){ah, bk, Ck, k < j}, (5.14) 
l + i  1-i 2j 

where for the sake of conciseness the expression of the vector R3 in the right- 
hand side has not been written. The resonances correspond to the vanishing of the 
determinant of the matrix in the left-hand side. This happens for 

(5.15) 

The resonances j = - 1 and j- are not acceptable because they imply a stronger 
divergence than the leading order. Thej, resonance allows the additional introduction 
in the expansion (5.13) of terms with the non-integer powerj, (and multiples thereof) ; 
the only restriction on their coefficient set (u,+,bj+,c3+) is that it belongs to the 
null-space of the corresponding matrix. This gives one arbitrary constant. Together 
with the arbitrary choice oft, we have two arbitrary constants. However, we need 
three to describe the general solutions of (5.5). So, our starting point, the Ansatz (5.9) 
fails. 

Next we relax the assumption that all three exponents a,/3 and y have strictly 
negative real parts and look for solutions of the form 

$‘l(t) - a(t--*)-’, $&t) - b(t-t*)-’ ,  $ J t )  - c(t-t*)Y (5.16) 

with Re y 2 0. With this Ansatz we find 

a = -l/B, b = i /c,  y = 0 and c arbitrary. (5.17) 

We then look for expansions of the form 
00 00 03 

eI(t) = E aj(t-b)’-‘l, $ z ( t )  = E bj(t-t*)’-’, es(t) = E cj(t-t*)’, (5.18) 
3 - 0  j - 0  5 - 0  

and obtain the new set of recursion relations f o r j  2 1 

E: j”.”c ($)= (Sj){ak, bk,Ck,  k <j}. (5.19) 

Now resonances occur for j = - 1, 0 and + 1. The value j = 0 reflects the arbitrary 
choice of c. We only need to consider j = 1 and to check whether compatibility 
conditions are fulfilled. By calculating explicitly the right-hand side of (5.19) we 
obtain 

bca,+acb, = B(cz-l)ab, bca,+acb, = iB(c2+l)ab, ibca,-iacb,+abc, = 0. 
(5.20) 

The first two equations are clearly incompatible for 2 + 0 and arbitrary c. As will 
be shown in $6, logarithmic corrections leading to breakdown of the Painlev6 
property are needed to ensure consistency and this introduces a third arbitrary 
constant. Hence we have found generic three-parameter expansions which do not 
satisfy the Painlev6 property, and this for any values of A, B and C all different from 
zero. This suggests that the ABC flows present no further cases of integrability, other 
than the obvious ones. 

-iac j a b  
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Remarks. We have learned from V. I. Arnold (1985, private communication) of the 
existence of unpublished work of Ziglin, using a Painlev6-type analysis, which proves 
the non-integrability of the ABC flows for small C and the non-existence of integrals 
analytic in C. 

H. Yoshida (1985, private communication) has noticed that ABC flows can be 
rewritten as a system of six first-order differential equations not involving A, B and 
C, with three first integrals depending on A, B and C. For this, in (2.5), set 

p, = B sinx, p, = C siny, 

q1 = B COSX, q, = C COSY, 

p ,  = A sinz, 

q3 = A COSZ, 

to obtain 

(5.21) 

(5.22) 

$1 = P1@3+q2) ,  $2 = qZ(Pl+d3)? $3 = 4 3 @ 2 + 4 1 ) ,  1 (5.23) 
41 = - ~ 1 @ 3 + ~ 2 ) ,  4 2  = - ~ , @ i + q a ) ,  43 = - ~ s @ , + q i ) - J  

In  this form it is obvious that the Painlev6 properties cannot depend on A, B and 
C as long as none of them vanishes. 

6. Analytic structure and clustering of singularities 
Several recent papers have been concerned with the structure of complex-time 

singularities in non-integrable cases (Tabor & Weiss 1981 ; Chang et al. 1981 ; Chang, 
Tabor & Weiss 1982; Chang et al. 1983; Yoshida 1984; Thual & Frisch 1984). In  all 
cases studied so far it has been found that singularities are not isolated but form 
continuous singular sets which may constitute ' natural boundaries ', i.e. boundaries 
across which analytic continuation is impossible. 

We now show how it is possible to study the analytic structure of the ABC flows 
in the non-integrable cases using a technique developed by Tabor & Weiss (1981) for 
the Lorenz system. We begin by showing how logarithmic correction can cure the 
problem encountered at the non-compatible resonance j = 1 found in $5. Following, 
for example Bender & Orszag (1978, p. 164 example 5) we make the following 
assumption for the local behaviour of +,, +2, +3 near tr 

(6.1) 

+l(t) = a(t-t,)-'+d ln(t-t,)+a,+ ..., 
$,(t) = b(t-t,)-l+e ln(t-tt,)+b,+ ..., 
+3(t) = c+f(t-t,) In (t - t , )  +c,(t-t,) + . . ., 

where a and b are given by (5.17) and c is arbitrary. Balance of terms of order (t - t,)-, 
in (5.5) requires now that 

I 
(6.2) 

bcu,+acb,+bcd = A(c2-1)ab, bca,+acb,+ace = iA(c,+l)ab, 

ibca, - iacb, + ab(c, +f) = 0 J 
and for the terms of order (t-t,)-, In ( t - t , )  

eu+bd = 0, abf= i(ea-db)c. (6.3) 

From (6.2) and (6.3) we get 

(6.4) 
d = aA[c(i-i)-c-1(i+i)], e = -bA[~(i- i ) -c- l ( i+i)] ,~ 

f = - A[cz(i + i) + (1 - ill. 1 
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The conditions are now compatible and (al, b,, cl) is determined up to an arbitrary 
vector of the null-space of the matrix 
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(; : :). 
-iac ab 

Together with t ,  and c this yields the three expected arbitrary constants in the 
expansion about t ,  which takes the general form (henceforth we set t ,  = 0) 

1 +a, +al 1 +a, +a, +a, +a, 

k-0 j-0 k-0 j-0 k-0 j -0  

9, = z z ak,t5(t lnt)k, $2 = X X b , t j ( t  1ntlk, y?3 = I: z c , t j ( t  1ntIk. 

(6.5) 

We have verified by substitution of (6.5) into the basic equations (5.5) that the 
recursion relations giving the coefficient sets (ak,, bkj, ckj) with k + j = n in terms of 
(aky,, b,,,,, ckt,,) with k'+j' < n are well defined except when k+j < 1. But these 
particular values ( (kg j  = ( O , O ) ,  (0, l ) ,  ( 1 , O ) )  correspond precisely to the orders of 
expansion just discussed. 

At this point, following Tabor & Weiss (1981), we notice that terms containing 
powers of t lnt with no additional powers of t dominate for small t ;  hence we 
concentrate on those akj, b ,  and ckj  with j = 0. It is easily checked that a closed set 
of recursion relations is obtained for the akO, bko and cko. The solutions of these 
recursion relations are obtained by introducing the generating functions 

a, al a, 

Some algebra leads to the following set of differential equations: 

The analogous system obtained by Tabor & Weiss (1981) had to be solved in terms 
of elliptic functions. Here the situation is simpler : the solution of (6.7) reads 

$,(x) = ~B-12 e-Az(e-Az - 11-1, $2(x) = - ihCx e-hz(e-Az - 11-1, $3(x)  = ce-ihz, 

(6.8) 

where A = ~ [ = - c ( l + i ) ]  C 

It is seen that &(x), $2(x) and $3(x) display to leading order the same sort of 
singularities in the x-plane as do $1, $2 and y?3 in the t-plane. The locations of the 
singularities (poles) nearest to x = 0 in the x-plane are 

2ix 
x** = f h' (6.10) 

Since x = t lnt is a multivalued function, each singularity in the x-plane gives rise 
in the t-plane to a sequence of secondary singularities converging to the original 
singularity at  t = 0 ; their positions are the antecedents of x, by the map t +. t In t .  
Since a similar analysis can be done starting from secondary singularities, and so on, 
a rather complicated recursive clustering of singularities is obtained. We believe that 
recursive clustering of singularities is a distinct mark of non-integrable systems. This 
may conceivably be (but has not yet been) related to the 'dense branching' of 
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integrals introduced by M. D. Kruskal (1984, Princeton University, unpublished 
work). He noticed that integrals of motion whose manifold of branches is so large 
that the possible values of the integrals become dense in the complex plane put 
essentially no restriction on the motion ; hence his suggestion that non-integrability 
be defined by dense branching. 

Finally we stress that expansions near complex singularities are of a purely local 
nature. It is somewhat surprising that local information (in the complex domain) can 
shed light on questions that are of a global nature (in the real domain) such as 
integrability . 

This work was supported by the U.S. Department of Energy, Contract No. 
DE-AT03-84ER53158. We have benefitted from discussions with V. Arnold, 
S. Childress, D. Galloway, H. K. Moffatt, 0. Thual, C. Tresser, and J. Weiss. 

One of the authors of this paper, Albert Mehr, disappeared on 1 September 1984 
in a mountain accident on Glacier d’argentihre. He was 25 years old. He had been 
studying a t  the Ecole Nationale SuNrieure de Physique de Marseille. His Ph.D. work 
was done with D. Escande at  the Ecole Polytechnique on transition to chaos in 
Hamiltonian systems with two degrees of freedom. He had many friends all over the 
world. 

Appendix A. The integrable case 

equations for motion along the streamlines are 
In this Appendix we discuss the exact solutions for the case C = 0. Then the 

i = A  sinz, i = B cosx ( A  B > 0) ,  (A 1) 

which have the invariant y-component of velocity 

V = B sinx+A cosz. 

Together with (A 1) it follows that 

$* = +(x-$fz) 

satisfies A - d :  = k2-sinZ$*, 

where 

From (A 5 )  it is clear that the region inside the vortices with closed streamlines 
is distinguished by Ikl < 1. The vortex centred at x = !jz, z = 0 has the property 
1 2 E >E,, where A - B  

Eo = - 
A + B ’  

It is defined by the Jacobian elliptic function 

sin $* = k sn [h(t f to)lk2], (A 7) 

where, in view of (A 2), we have chosen our time origin so that x = in, z = zo at t = 0 
with zo, to the positive solutions of 

k-2 sin2 (+z0) = sna (htolk2) = - 
1 + E ’  (A 8) 2 M O  
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It is straightforward to calculate the winding number of the streamflow within the 
vortex. The period of the flow in the y-direction is the periodicity length 2n divided 
by the velocity V .  The period around the vortex obtained by integrating (A4) is 
4K(k2)/h, where K(k2)  is the complete elliptic integral of the first kind. The ratio of 
these two periods gives the winding number 
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KW, E-1 
(j)=- 

2K(k2) 

On the axis, E = 1, k = 0 we find that 

w = w,. (A 10) 

The shear layer outside the vortices is characterized by Ikl > 1 with E, > E > - E,. 
Applying Jacobi’s real transformation (see, e.g., Abramowitz & Stegun 1964) (A 7)  
may be expressed in the alternative form 

sin#* = sn [hk(tf t , ) lk-2] ,  
where (A 8) is now 

m(1- E )  
sin2 (iz,) = sn (hkt,lk-2) = 

2wo . 
When C is perturbed away from zero the streamline E = 0 becomes the centre of an 
x-directed principal vortex. 

When B = A ,  the shear layer disappears (E,  = 0) and when B > A the shear layer 
becomes y-directed. I ts  description is readily obtained from (A 1 1 )  (A 12) by an 
appropriate change of variables. On the other hand, the solution (A 11)-(A 12) itself 
continues to be of interest. Note, however, that since E, > E > - E, it follows from 
(A 5 )  and (A 12) that 

(A 13) 

Consequently the parameter to is complex and so are the corresponding solutions 
(A 11) .  They are nevertheless of interest, because, for small finite values of C ,  two 
complex-conjugates can coalesce and form two real solutions. This ‘tangent 
bifurcation’ is the process by which the axes of the two z-directed principal vortices 
are formed. 

1 < sn2 (Akt,lk-2) < m2. 

Appendix B. Creation/destruction of stagnation points 
Here we show a close connection between closed streamlines and streamlines that 

connect stagnation points of the flow (heteroclinic lines). In fact, we show that one 
kind of streamline can transform to the other when parameters are varied so that 
stagnation points are created or destroyed. 

The technique that is used is perturbation theory. In particular, we study the 
parameter values A2 = 1,  < B2 < 1, and C2 = (1  - B2)( 1 + 2 ~ ) ,  where c: is small. When 
c: is negative, there are no stagnation points in the flow, but when it is small and 
positive they exist in close pairs. We proceed by examining the flow in a small region 
in the vicinity of the pair of stagnation points, and match these solutions to the global 
problem to obtain the desired streamlines. 

When c: vanishes, there are four double stagnation points in the periodicity box. We 
focus on the one a t  (in, 0, arccos ( - B ) ) ,  with K < z < in. 

We first consider the local problem, and shift the origin of coordinates to the point 
where the stagnation points come into existence, x = in+ X ,  etc. Expanding, and 
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retaining leading-order terms with the Ansatz X x Y x 8, 2 x E ,  we find approxi- 
mate equations for flow along the streamlines 

Z - tTX2, 
dx dY 
dt dt 

(l-B2)-i-= B - T Z - i r ; ,  (1-B2)-4- = 

dz 
dt 

(l-B2)-i- = Y - T X .  J 
Z - tTX2, 

dx dY 
dt dt 

(l-P)-i-= B - T Z - i r ; ,  (1-B2)-4- = 

dz 
dt 

(l-B2)-i- = Y - T X .  

Here T = B / ( 1  -B2)i. In the rest of this Appendix, an overdot represents the 
derivative with respect to the normalized time, (1 --B2)!t. Within this approximation, 
the stagnation points occur at 

A 8 x=+-, Y = & I ,  z=-  
- T  2T 

The character of this flow can be better understood from the following two 

g* = CfSf (B 3) 

equations that can be derived from (B 1): 

where 

S* = k ( P + l ) i  Z-- + Y - T X T  6 ( P +  1): [ (P + 2 P + 3 )  ( Z"T> 
- 2 T ( P - l ) X Y ( 3 P + 2 P + l )  P+3(P-i)(P+l)$]+. . .,} (B 4) 

I [ T ( T d + 2 ) X + ( 2 P + l )  yl+ . . . . 
3 ( F +  1)2 

c* = +(P+l)!+ 

Here the dots stand for higher-order polynomials in X, Y and 8. They are determined 
by the condition in each order that the two error terms vanish, one independent of 
2 and the other linear in 2. It follows that streamlines can be confined to either of 
the surfaces S* = 0. Streamlines away from the surface S* = 0 diverge from it, while 
other streamlines converge toward S- = 0. The two surfaces intersect orthogonally 
along a streamline. This line passes through the stagnation points when 8 is positive. 

Flow along the line of intersection can be deduced from the relation 

X + T Y =  e-+(IaX2+ P). (B 5 )  

Thus the flow is generally in the direction of negative X and Y ,  except between 
the two stagnation points when B is positive. Note that characteristic rates for flow 
along the intersection streamline are small, of order 6 and X, while the characteristic 
times for perpendicular flow are much faster, of order C* . 

We next consider the global problem when 8 is negative, and search for closed 
streamlines that pass through the local region treated above. Now, the line 2 = $, 
y = 0, or X = Y = 0, is a symmetry line of the system, according to $2, and it is shown 
in figure 1. Thus a streamline that connects this line with another symmetry line is 
necessarily a closed streamline, since symmetry forces the continuation of the flow 
to return to its starting point. We assume that there are closed streamlines that pass 
through the symmetry line for small 2. This is essentially equivalent to the statement 
that the surface S- = 0, extended into the regime of finite X ,  Y ,  2, intersects another 
symmetry line, since streamlines that pass through the symmetry line rapidly 
converge to S- = 0. In the same way, by symmetry, the closed streamlines must come 
back into the local region very close to the surface S+ = 0. In the limit of small B ,  
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the ratio of velocities parallel and perpendicular to the intersection streamline 
becomes very large. Thus a streamline that heads out in a given direction to intersect 
a given symmetry line must come asymptotically close to the intersection streamline, 
and in the limit of vanishing s, become coincident with it. 

It is reasonably clear that the flow in the neighbourhood of this streamline must 
be globally unstable, since it is extremely unstable locally. Further, the period of the 
flow becomes infinite in the limit as E goes to  zero. 

Finally, we consider the flow when s is positive. The closed streamlines that were 
discussed in the previous paragraph do not exist here. To see this, note that the 
stagnation point at positive X and Y is a node of the flow in the S+ = 0 surface. Thus 
it is a type-a point in the notation of $2.3. The flow diverges from this point along 
a line lying in the S- = 0 surface, so that flow from upstream near the intersection 
of S* is blocked from the course it took in the negative-s case. 

Closed loops of streamlines can be formed in the following way. In  the surface 
S- = 0, flow diverges from the type$ stagnation point at  negative X and Y. Any of 
these streamlines that intersect a symmetry line return to the type-a point discussed 
above, closely following the closed streamline that exists for negative s. This can be 
closed by the streamline along the intersection of S* = 0, that joins the two 
stagnation points. 

Thus it is reasonable to say that closed streamlines can be replaced by heteroclinic 
lines when stagnation points are formed. 
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